Charge requirements for proton gradient-driven translocation of anthrax toxin.

نویسندگان

  • Michael J Brown
  • Katie L Thoren
  • Bryan A Krantz
چکیده

Anthrax lethal toxin is used as a model system to study protein translocation. The toxin is composed of a translocase channel, called protective antigen (PA), and an enzyme, called lethal factor (LF). A proton gradient (ΔpH) can drive LF unfolding and translocation through PA channels; however, the mechanism of ΔpH-mediated force generation, substrate unfolding, and establishment of directionality are poorly understood. One recent hypothesis suggests that the ΔpH may act through changes in the protonation state of residues in the substrate. Here we report the charge requirements of LF's amino-terminal binding domain (LF(N)) using planar lipid bilayer electrophysiology. We found that acidic residues are required in LF(N) to utilize a proton gradient for translocation. Constructs lacking negative charges in the unstructured presequence of LF(N) translocate independently of the ΔpH driving force. Acidic residues markedly increase the rate of ΔpH-driven translocation, and the presequence is optimized in its natural acidic residue content for efficient ΔpH-driven unfolding and translocation. We discuss a ΔpH-driven charge state Brownian ratchet mechanism for translocation, where glutamic and aspartic acid residues in the substrate are the "molecular teeth" of the ratchet. Our Brownian ratchet model includes a mechanism for unfolding and a novel role for positive charges, which we propose chaperone negative charges through the PA channel during ΔpH translocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient.

Protective antigen (PA) from anthrax toxin assembles into a homoheptamer on cell surfaces and forms complexes with the enzymatic components: lethal factor (LF) and edema factor (EF). Endocytic vesicles containing these complexes are acidified, causing the heptamer to transform into a transmembrane pore that chaperones the passage of unfolded LF and EF into the cytosol. We show in planar lipid b...

متن کامل

Evidence for a Proton–Protein Symport Mechanism in the Anthrax Toxin Channel

The toxin produced by Bacillus anthracis, the causative agent of anthrax, is composed of three proteins: a translocase heptameric channel, (PA(63))(7), formed from protective antigen (PA), which allows the other two proteins, lethal and edema factors (LF and EF), to translocate across a host cell's endosomal membrane, disrupting cellular homeostasis. It has been shown that (PA(63))(7) incorpora...

متن کامل

Energy requirements for diphtheria toxin translocation are coupled to the maintenance of a plasma membrane potential and a proton gradient.

Translocation of diphtheria toxin (DT) or ricin to the cytosol is the rate-limiting step responsible for (pseudo) first-order decline in protein synthesis observed in intoxicated cell populations. The requirements for energy utilization in the translocation of both toxins are examined by perturbing the intoxication during this period of protein synthesis decline. Translocation of either toxin i...

متن کامل

A kinetic analysis of protein transport through the anthrax toxin channel

Anthrax toxin is composed of three proteins: a translocase heptameric channel, (PA(63))(7), formed from protective antigen (PA), which allows the other two proteins, lethal factor (LF) and edema factor (EF), to translocate across a host cell's endosomal membrane, disrupting cellular homeostasis. (PA(63))(7) incorporated into planar phospholipid bilayer membranes forms a channel capable of trans...

متن کامل

Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation.

Cellular compartmentalization requires machinery capable of translocating polypeptides across membranes. In many cases, transported proteins must first be unfolded by means of the proton motive force and/or ATP hydrolysis. Anthrax toxin, which is composed of a channel-forming protein and two substrate proteins, is an attractive model system to study translocation-coupled unfolding, because the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 26  شماره 

صفحات  -

تاریخ انتشار 2011